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ENERGY TRANSPORT BY RADIATION IN A COMPOSITE CHANNEL 

S. P. Detkov UDC 536.3 

An approximate solution is proposed for the heat flux and temperature distribu- 
tion in a channel comprised of cylindrical and conical sections. 

The simplest composite channels (Fig. i) are windows in chambers with high temperature 
or pores of a continuous body. They can be made complicated by the quantity of sections and 
by their shape. There is no transverse energy transport. We also neglect longitudinal trans- 
port in the walls. But the walls reflect and reradiate the energy absorbed, and the medium 
dissipates it. Sources and sinks are arranged only on the endfaces. Consequently, the po- 
wer of the resultant flux is constant, Q = const, W, while the channel is called conservative 
or adiabatic. The geometric and optical characteristics of the bodies and the endface tem- 
perature are given. The magnitude of Q and the temperature distribution over the channel 
length are determined. 

The solution of the general problem is given in [i] on the basis of differential equations 
but it turns out to be quite complex even for gray bodies. An approximate, very simplified 
solution is proposed in this paper. 

Represented in Fig. 2 are systems of coaxial cylinders or concentric spheres and channel 
section specimens. The analytic solutions for the system 2a are in handbooks [2, 3] but with 
the flaw that they do not take account of the jump in potential in a layer of the medium be- 
cause of expansion of the flux of the radiant energy transport vector. Given below is a cor- 
rect solution. 

The systems of bodies in Fig. 2 are simulated by an electrical loop. We consider @ 
n2oT 4 the transport potential. The quantity @~ - @2 is the analog of the electromotive force 
and is distributed over the external and internal sections of the closed loop. Three outer 
sections are shown in the diagram. The jumps in the potential are written by analogy to the 
Ohm's law for the loop sections: 

, 0 R~ A o ~ =  O R~ A o ' =  O 
A@I = F1 A1 F2 A~ F~ rl~. 

The f i r s t  two a r e  lumped in  p o i n t s  on t h e  s u r f a c e s  w h i l e  t h e  t h i r d  i s  d i s t r i b u t e d  in  t h e  
medium. The i n t e r n a l  r e d u c t i o n  in  t h e  p o t e n t i a l  i s  a l s o  c o m p r i s e d  o f  t h r e e  p a r t s  w i t h  jumps 
due t o  A@l"--  t h e  a c t i o n  o f  s o u r c e s  in  body 1, A@2" and A@" -- t h e  a c t i o n  o f  s i n k s  in body 2, 
where A@" a p p e a r s  d u r i n g  " l e a k a g e "  o f  t h e  s i n k s  ove r  t h e  s u r f a c e  F2 when t h e  d e n s i t y  o f  t h e  
r e s u l t a n t  f l u x  i s  r e d u c e d .  S i m i l a r l y  t o  e l e c t r o d e s  o f  t h e  c u r r e n t  s o u r c e ,  s u r f a c e s  1 and 2 
c o m p r i s e  a u n i t .  The c h a n n e l  s e c t i o n  i s  a h e a t  machine  in  which  t h e  h e a t e r  c a n n o t  a c t  w i t h -  
ou t  a r e f r i g e r a t o r  a c c o r d i n g  t o  t h e  second  law of  t he rmodynamics .  But t h e  s u r f a c e s  a r e  s e p a -  
r a t e d  more greatly as contrasted to the electrodes, the jumps A@I" and ~@2" are at their ex- 
ternal sides while A@" is between them. In fact, A@2" and A@" are not related to the resis ~ 
tance to the flux. Nevertheless, we simulate all the jumps by sections of the loop. The 
complete jumps in the potential on and between the surfaces equal 

Ao~ = Aol + ao;', Ao= = A o ;  + ao~, ao = Ao' + ao". 

All-Union Scientific-Research Institute of the Energy of Nonferrous Metals, Sverdlovsk. 
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 54, No. 6, pp. 1018-1022, June, 1988. 
Original article submitted February 18, 1987. 

0022-0841/88/5406-0689512.50 �9 1988 Plenum Publishing Corporation 689 



I 

a b c 

Fig. i. Simplest examples of composite channels. 

a b c 

Fig. 2. Approximate similarity of three 
systems of bodies and the electrical di- 
agram to simulate energy transport. 

According to the balance of the jumps 

AOI+A03 + AO-- 01--03. (i) 

The problem is to determine the jumps A01", A@2" , and AO". For a short-circuited loop 
R I = R 2 = r12 = O. The internal jumps remain and 

AO~ + aO~ + AO" = 01 - -  e~. (2)  

Two equations are still necessary for (2). The angular distribution of the rays does 
not change for the cold surface 2, consequently 

ql/q~ = ~sl/~:~ = 0 ; / 0 ~  = FJF1, (3) 
where all the quantities characterize a medium in contact with the surfaces; qs = 4n2~ 
and the radiant temperature equals the ordinary temperature, T r = T. 

For a zero temperature of the surface 2, e2" = A02". Then taking (3) into account 

AO~ + ae~ (F/F1) = @1 - -  O= (4) 
is obtained from (2). 

We also assume that the jumps A01" and A82" are proportional to the flux densities and 
therefore A91"/Ae2" = F2/F ~. Substituting AO=" = (01 - 02)Fx/(2F 2) into (4), we have A81" = 
(O h - 02)/2, AO" = (01 - 02) (i -- FI/F2)/2. In the presence of external resistances, the 
complete potential jumps have the form 

Ao1 = ~ \ A1 + ' 

AO~ = 

After substitution into (i) 

Q [r1,+ I( 
.F I .... -~- 

0 
(s) 

For black surfaces 

We represent (6) as 

(2 O1 - -  O3 ( 6 )  
F1 (l /A0 + ri3 + (F1/F~) R3/A, 

q0x = (O1 - -  O~)/(1 @ rx~). (7) 

q0t = 1 4  qol (R_~q_ F._At R._~) 
ql O 1 - -  O~ _ F2 A3 ' ( 8 )  

which  c o r r e s p o n d s  t o  t h e  s o l u t i o n  in  [2 ,  p.  678,  T a b l e  1 7 . 5 ] .  

h computation of the temperature jumps is presented in [4] for the system of Fig. 2a in 
a diffuse approximation. According to (5) the quantity AO" was not extracted. The flux den- 
sity, if it is relatively small, is computed for coaxial cylinders according to the formula 
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TABLE i. Thermal Resistance 
of a Layer of the Medium be- 
tween Coaxial Long Cylinders 
rl2 (upper numbers are a com- 
putation according to [5] and 
formula (6) and the lower are 
according to the Rosseland ap- 
proximation (ii)) 

T0=k(p2--p,) 

4 

6 

8 

10 

I_ P~/P' 

0 
0,48 
0,52 
0,98 
1,04 
2,00 
2,08 
3,06 
3,12 
4,00 
4,16. 
5,25 
5,20 

1o 

0 
0, I5 
0,19 
0,32 
0,38 
0,64 
0,77 
1,00 
1,15 
1,34 
1,54 
1,70 
1,92 

~,--e2 A~-I 21 ' P--L( ! 9 2  As 21) 3 3 1 [ (9, /2 1 q----~ = -1- - } - ~ - k p ,  ln -9~ + ~ ~ 1 -- 
91 16 k9, ~-~2/ ]" (9) 

It is written with misprints in the handbook [3] where the last term is omitted. The condi- 

tion kpl ~ 1 shows that the error is not large if the optical thickness of the medium is 
sufficiently large, more exactly, if the photon mean free path is less than Pl. Formula (6) 
has no such constraints. 

Formula (9) also corresponds to (8) but the resistance of a layer of the medium is com- 
puted differently upon comparison with (7) 

r,~ = - T k 9 1  + 1 - -  1 - -  ( 1 0 )  
91 16 k91 \ p~ / J - - 2 -  ~ " 

The a n a l y t i c  s o l u t i o n  ( 6 )  i s  e x a c t  i n  t h e  m e a s u r e  o f  t h e  q u a n t i t y  r ~ 2 .  I n  t h e  R o s s e -  
l a n d  a p p r o x i m a t i o n  

or 

where 

q = 4 1 

3 k 
grad O and r n  = 0.75kpl In (PdPQ 

r~2-- fl(To)f~(pd9~), (11 )  

/x=0.7S%, % = k ( p 2 - - 9 1 ) ,  f~= ln(pJ91) 
(p~/Pl ) - - l "  

The differences between (i0) and (ii) are substantial but they are still greater according 
to the complete formula in [4]. 

The correct solution for coaxial cylinders is obtained in [5] by the Monte Carlo method. 
It confirms the jump in the potential in the derivation of (6) and the formula itself (see 
also the nomograms in [2, p. 695] and [3, p. 354] (jointly)). 

Compared in the table are computations of r12 from the nomogram in [5] and by means of 
(ii). It is seen that the solution (ii) has no constraints in kpl, is sufficiently exact, 
but exaggerates the flux even for P2/Pl = 2, with the exception of the lower value. As P2/ 
Pl + i, in the passage to a plane layer, f2 ~ i, f~ = 0.75 ~0- According to the most exact 
relationship in the literature [i] 
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[i=0.75x0+ 0,06 [I -- exp (-- 3%)]. 

In this case (ii) understates the result. 

Analysis of the diffusion approximation in [6] showed the dependence of the transport 
coefficient on a number of conditions and the possibility of its correction only in limited 
cases. 

The systems in Figs. 2a and b are similar with a reservation. The direct flux for @i > 
02 is determined by the same formula (6) but with an additional error associated with the 
inhomogeneity of the quantity q2. In the limit of the coming together of the surfaces, the 
inhomogeneity of q2 and the unsuitability of (6) are evident. In such a case, the surfaces 
should be divided into zones with sufficiently homogeneous flux densities. But this method 
is not examined here. Consequently, we continue the analysis under the condition that the 
surfaces are sufficiently remote from each other. 

For the reverse flux (0 2 > 8 i) a part of the endface i forms a diaphragm with the po- 
tential jump (Q/F i) (I - Fi/F2). There are no diaphragms in the system 2a but the effect 
is the same: part of the rays directed past the surface 1 is returned to the surface 2. The 
jump because of the growth of the line density of the resultant flux vector is written for 
ri2 = 0 in (5) but with opposite sign. The total jump is realized and it is obtained exactly 
as for the direct flux 

Ao = (QIFO (! - -  F d G ) I 2 ,  

with the conservation of the reciprocity relation upon changing the flux direction. The 
quantity r includes the wall resistance and r = 0 only in the absence of a medium and spe- 
cularity of the ray reflections from the walls. The conicity of the side surface in Fig. 2c 
changes the form of the diaphragm. For any angle at the cone apex a part of the rays is re- 
turned to surface 2 and the jump remains the same. 

All the relationships for the channel section are obtained with the assumption of unifor- 
mity and isotropy of the effective flux at the endface-source. Analysis of the channel is 
simplified if this is extended to the input sections Of all portions of arbitrary number. The 
thermal resistances of the channel elements are combined. The thermal flux is obtained un- 
derestimated since the flux densities are actually elevated on the channel axis as compared 
with the circumference. For the composite channel in Fig. la, the jumps in the potential on 
the elements are written successively 

Q (RI q_~) Q rl; Q (I F2 )/2. ~ the first diaphragm; 
F i ~ A, ; Fi ~ Fi 

F~ F3 F2 
on the second diaphragm. 

Summation of the jumps yields 

qz= 

q l  

1 + F3 ~ r~ F~ R1 
Aa ,.=, - ~ / q  F~ Ai 

01--  Oa 
F 1 1 3 ri Rx 

-i=l At v 

with conservation of the equality Fiq i = -F~q 3. 

For the channel in Fig. Ib 

i= l F3 A8 
9 

Channel  l c  i s  a model  o f  c h a n n e l  lb  f o r  which o n l y  t h e  c o m p u t a t i o n  o f  t h e  q u a n t i t y  

3 

rdFi = ri~/Fi -4- r2/F~ q- r2dFo. 
i=1 
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changes, where 

rl2/F1 = :  r,~l/F.,_, r,,~/Fo_ =: r~o_/F3. 

This method agrees with the results in [7] obtained for molecular fluxes by virtue of 
their analogy to radiant fluxes. In contrast to [7], the channel is made complicated while 
the jumps in the potential are determined on its elements. The heat flux is obtained by 
summing the jumps. 

NOTATION 

k, attenuation coefficient, m-l; r, thermal resistance to radiant flux, dimensionless; 
q, resultant flux density, W/m2; @ ~ n=oT4; A, endface absorptivity; R = 1 - A; F, channel 
section area, m2; Q, resultant flux power in the channel, W; T, temperature, K; p, radius, m; 
~0, optical thickness of a layer of the medium. 
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OPTIMIZATION OF THE THERMAL MODE OF POLYMER 

SUBSTRATES DURING THEIR VACUUM METALLIZATION 

A. V. Rogachev and M. V. Bui UDC 539.4:539.62:678 

An analytic expression is obtained for the specific heat of the vacuum metalli- 
zation process. Optimal values of the evaporation temperature are determined 
for a number of metals and maximal deposition rates are estimated at which ther- 
mal rupture of the polymer materials does not occur. 

Utilization of the highly productive technology of vacuum metallization of polymer mat- 
erials by the method of evaporation and condensation of metal atoms is constrained to a signi- 
ficant extent by their relatively low thermal stability and the substantial change in their 
physicochemical properties during heating. The multivariety of the thermal action to which 
a substrate is subjected during vacuum metallization and the complex nature of the change 
in the system thermophysical properties during metal film growth produce a number of difficul- 
ties in the strict formulation and resolution of the appropriate transport equations [1-3]. 
To a considerable extent this circumstance governs the lack of a simple method, but sufficient- 
ly completely reflecting the features of metallization, for computing the substrate tem- 
perature and determining the influence of fundamental technological parameters of coating 
superposition on its values. An approach is developed in this paper for the selection of 
the technological metallization modes that are optimal in the energetic action on the sub- 
strate that is based on utilization of the specific heat of the process. 

In the general case, the energy obtained by the substrate for any method of producing 
the vapor phase of a metal consists of the energy of radiation of the surface of the metal 
being evaporated, and the energy of the phase transitions of the coating material. Since the 
metallization process proceeds at low pressure, heat transmission from the evaporator to the 
substrate because of convection and heat conduction is negligible. Then if there is no 
chemical interaction in the formation of the coating then the heat flux density perceived by 
the substrate can be determined from the relationship 
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